Правильное решение задач по генетике на дигибридное скрещивание

Законы Менделя

Для определения закономерностей, по которым в потомстве происходит распределение наследственных АП, Г. Мендель анализировал результаты, полученные при скрещивании разных сортов гороха и их гибридов с 1856 по 1864 год.

Растение, выбранное им, было удобно по ряду качеств:

  • хорошо и быстро выращивается;
  • дает многочисленное потомство;
  • имеет много АП;
  • самоопыление, что дает большое число чистых линий, которые передаются из поколения в поколение.

Успеху ученого способствовало то, что он отслеживал наследование только определенного числа признаков. В зависимости от этого скрещивание бывает:

  • моногибридным;
  • дигибридным;
  • полигибридным.

Моногибридный метод

При моногибридном скрещивании все особи F1 наследуют одинаковые особенности, полученные только от одного из родителей. У гороха это оказались красные цветы, белые полностью отсутствовали. Проявляющийся признак Г. Мендель назвал преобладающим или доминантным, а отсутствующий — отступающим или рецессивным.

Выявленные закономерности нашли отражение в гипотезе о чистоте гамет, предполагавшей наличие какого-то материального фактора, определяющего доминантный характер того или иного признака. Позднее гипотеза подтвердилась, предполагаемый фактор был обнаружен и получил название «ген». У каждой особи два гена, унаследованных один от отца, другой от матери. Их функция — определение признака, который разовьется у новой особи.

При формировании гаметы в нее попадает только один ген. Половина гамет несет доминантную особенность, другая половина — рецессивную. При этом любое сочетание гамет дает гибридам одинаковые генотипические и фенотипические черты. Таким образом происходит наследование у гибридов первого поколения. Эту генетическую закономерность назвали законом доминирования или законом единообразия гибридов первого поколения (первый закон Менделя).

Неполное доминирование

Если в поколении F1 появляются гетерозиготные особи с фенотипом, полностью отличным от фенотипа гомозиготных форм родителей, то говорят, что наследование носит промежуточный характер. При этом выраженность АП оказывается с более или менее выраженным уклоном в сторону кого-то из родителей. Это происходит в том случае, если рецессивные аллели неактивны, а доминантные не имеют достаточной степени активности, чтобы уровень проявления АП доминантной гомозиготы родителя был достаточным для наследования потомством этой черты в полной мере.

Например, если при скрещивании львиного зева с пурпурными и белыми цветками все потомство оказалось с розовыми, это говорит о неполном доминировании аллели, несущей информацию о пурпурном окрашивании. В последующих поколениях происходит фенотипическое расщепление — на два розовых цветка приходит один белый и один пурпурный, т. е. устанавливается соотношение 1:2:1.

Процесс самоопыления

Дальнейшие исследования ученый проводил самоопылением гибридов F1. Было установлено, что в F2 появляются особи как с доминантными признаками (красные цветы, желтые семена), так и с рецессивными (белые цветы, зеленые семена) в соотношении 3:1. Это явление называется законом расщепления гибридов второго поколения или вторым законом Менделя.

При самоопылении происходит равновероятное сочетание гамет во время оплодотворения. В F2 может появиться как нерасщепляющееся гомозиготное потомство с одинаковыми аллельными генами (АА или аа) в гомологичных хромосомах, так и гетерозиготные особи с расщеплением и разными аллелями (Аа), образующими два вида гамет.

Дигибридное скрещивание

Дигибридным скрещиванием именуют скрещивание организмов, которые различаются по двум признакам. В случае скрещивания форм, отличающихся по большему количеству признаков, употребляют термин – полигибридное скрещивание.

Схематично дигибридное скрещивание выглядит так:

Г. Мендель скрещивал между собой две чистые линии гороха, которые различались по двум признакам: 

  • форме (морщинистые и гладкие);
  • цвету (зеленые и желтые).

Данное скрещивание подразумевает определение признаков разными парами генов: одна отвечает за форму, а другая — за окраску. Гладкая форма семян (В) преобладает над морщинистой (b), а желтые горошины (А) доминируют над зелеными (а).

Как видно из приведенной схемы, образовалось несколько комбинаций гамет для простоты представления которых, рекомендуется пользоваться решеткой американского генетика – Пеннета. Она позволяет наглядно представить все виды комбинаций генов в гаметах и результаты их слияния.

Горизонтальная часть такой таблицы отражает мужские гаметы, а женские записаны в вертикальном столбце. Таким образом, образуется 4 вида гамет: АВ, Аb, аВ и аb. При этом количество зигот, которые могут возникнуть при случайном слиянии этих гамет, равно 4*4=16. Именно столько клеток и отражает решетка Пеннета.

Приведенная таблица отражает 9 видов генотипов, повторяющихся в 16 сочетаниях. Эти 9 генотипов проявляются в виде 4 фенотипов:

  1. желтые, гладкие;
  2. желтые, морщинистые;
  3. зеленые, гладкие;
  4. зеленые, морщинистые.

Численно представленное соотношение выглядит так: 9 желтых, гладких : 3 желтых, морщинистых : 3 зеленых, гладких : 1 зеленый, морщинистый.

При отдельном рассмотрении полученных результатов, видно, что по каждому из изученных признаков сохраняется соотношение 3:1, характерное моногибридному скрещиванию. Из этого, Г.Мендель заключил, что в результате дигибридного скрещивания признаки и гены наследуются независимо друг от друга. Данный вывод стали именовать «законом независимого наследования признаков», который действует при расположении генов по разным хромосомам. 

Формулировка данного закона звучит так: каждой паре аллельных генов (с альтернативными признаками) свойственно независимое друг от друга наследование.

Основу комбинативной изменчивости, передающейся по наследству, составляет «закон независимого комбинирования генов», работающий у живых организмов в результате их скрещивания. Стоит отметить, что закономерности дигибридного скрещивания работают исключительно для генов, которые локализованны в разных парах гомологичных хромосом. Причиной этому служит независимое друг от друга комбинирование в клетке негомологичных хромосом.

Дигибридное скрещивание имеет и цитологические основы. Так, в профазу I мейоза гомологичным хромосомам свойственна конъюгация и расхождение в анафазе. Расхождение хромосом происходит от средней части клетки (экватор), причем к каждому полюсу отходит по одной  хромосоме. В результате такого расхождения происходит независимое комбинирование негомологичных хромосом в свободном и независимом порядке. Оплодотворение приводит к восстановлению в зиготе диплоидного хромосомного набора, в результате чего гомологичные хромосомы, оказавшиеся в процессе мейоза в разных половых клетках родителей, соединяются вновь.

Таким образом, закон независимого наследования признаков демонстрирует дискретный характер генов. Это видно в ходе независимого комбинирования аллелей у разных генов. Дискретностью гена определяют свойство, которое заключается в его контролировании благодаря наличию либо отсутствию специальной биохимической реакции, которая влияет на подавление либо развитие определенных признаков внутри живого организма. Вероятнее всего, что несколько генов определяют какое-либо одно свойство или один признак (длина колосьев пшеницы, окраска глаз дрозофилы, форма куриных гребней и прочее).

Смотри также:

  • Закономерности наследственности, их цитологические основы
  • Законы Т. Моргана: сцепленное наследование признаков, нарушение сцепления генов
  • Генетика пола. Наследование признаков, сцепленных с полом. Взаимодействие генов. Генотип как целостная система. Генетика человека

Гибридологический анализ

Данный метод генетики основан на скрещивании особей одного вида с альтернативными (контрастными) признаками (АП) и отслеживании их дальнейшего развития у следующих поколений потомства. При этом должны соблюдаться условия:

  • изучаются только исследуемые признаки, остальные не учитываются;
  • целенаправленно подбираются родители с нужными приметами;
  • потомство каждой особи выращивается отдельно от других;
  • ведется количественный учет гибридов, получивших изучаемые признаки;
  • в ряду поколений оценивается потомство, полученное от каждого родителя.

При изучении моно- и дигибридного скрещивания в биологии используются следующие общепринятые символы:

  • Родительский организм обозначается латинской буквой P.
  • Женский пол — значком или буквой E.
  • Мужской пол — значком или буквой G.
  • Скрещивание — знаком умножения.
  • Гибридное потомство — латинской буквой F и отмечается цифровым индексом, означающим порядок поколения (F1, F2 и т. д. ).
  • Заглавной буквой записывается доминантный (A, B), строчной — рецессивный ген (a, b).
  • Двумя заглавными — гомозигота по доминантному (AA, BB), двумя строчными — гомозигота по рецессивному признаку (aa, bb).
  • Заглавной и строчной буквами (Аа, Bb) обозначается гетерозигота.

Основные понятия

Для понимания законов наследования необходимо ознакомиться с понятиями, которой пользуется генетика. Генотип — совокупность генов, присущих одному организму. Они получаются от родителей в индивидуальном порядке и могут влиять друг на друга. Фенотип — анатомические, физиологические и биохимические особенности, сформировавшиеся у организма во время его развития и определенные генотипом.

Гены — это сегменты дезоксирибонуклеиновой кислоты (ДНК), состоящие из белков или полипептидов, в которых зашифрован код того или иного признака. Они содержатся в хромосомах — внутриклеточных структурах всех органов и тканей живого организма. Цепочки генов в хромосомах могут насчитывать тысячи фрагментов. Каждый вид имеет свой набор хромосом, т. е. определенное их количество. Родительские хромосомы, похожие по строению и размеру, называются гомологичными, а их участки, кодирующие одни и те же белки, — аллельными генами.

Клетки, участвующие в оплодотворении (мужские и женские), называются гаметами, им присуща гаплоидность — половинный набор хромосом. Если в процессе участвуют клетки с разным генотипом, то он называется скрещиванием. В зависимости от способа оплодотворения бывает естественным и искусственным. Особи, полученные от скрещивания, называются гибридами. Зигота — оплодотворенная клетка, в которой два гаплоидных набора родительских хромосом сливаются в один диплоидный.

Во время деления зиготы участки аллелей генов могут взаимозаменяться, в результате у потомства происходит замещение по генотипу или по фенотипу. Полученные генотипы разделяются на гомозиготные и гетерозиготные организмы. У первых гомологичные хромосомы содержат аллели генов с одинаковым состоянием одного и того же признака (только доминантным или только рецессивным), по которому могут образоваться гаметы только одного сорта. При скрещивании таких особей по этой особенности расщепления не происходит.

Моногибридное скрещивание

Моногибридным называется такое скрещивание, в результате которого изучается проявление одного признака. При этом прослеживаются наследственные закономерности пары вариантов по одному признаку. Развитию данных проявлений способствуют пары аллельных генов. 

К примеру, признак «окраски венчика цветка» гороха может проявляться в двух вариациях: белый и красный

Другие признаки, присущие данным организмам, во внимание не берутся

Схемой моногибридного скрещивания является:

Здесь четко прослеживается проявление первого закона Г. Менделя (единообразие гибридов первого поколения). Скрещивают два растения гороха, отличающихся окраской семян. А – желтые (доминантный признак), а – зеленые (рецессивный признак). Все гибриды первого поколения проявляют доминантный признак — желтые семена

При этом не берется во внимание, какое из растений давало пыльцу, а какое являлось «ее приемником». Аналогичные результаты получались, когда скрещивали другие растения, различающиеся также на один признак. 

На основе полученных результатов Г. Мендель сформировал свой первый закон: Скрещивание гомозиготных родительских форм, которые различаются по одному альтернативному признаку, гибриды первого поколения в генотипе и фенотипе проявляют единообразие.

От самоопыления (скрещивания) полученных гибридов первого поколения между собой был получен следующий результат:

  • 2001 штук (зеленые семена);
  • 6022 штук (желтые семена). 

Приблизительно полученное соотношение равно 1:3 или 3:1. Обнаруженную закономерность назвали законом расщепления (второй закон Менделя). Его трактовка такова: Скрещивание гетерозиготных гибридов, полученных в первом поколении, приводит к преобладанию во втором поколении признаков по соотношению 1:2:1 (генотип) и 3:1(фенотип).

Для определения генотипа особи, полученной от перекрестного скрещивания, часто прибегают к анализирующему скрещиванию. Анализирующим скрещивание называют скрещивание, когда неизвестный генотип скрещивают с гомозиготным по рецессивному гену организмом.

Становится виден механизм расщепления гомозиготных особей по доминантному гену. Полученные результаты привели Г. Менделя к выводу, что не происходит смешивания наследственных факторов при образовании гибридов, но сохраняется их неизменный вид. Так как возникновению между поколениями связей помогают гаметы, то вероятнее всего, что при их образовании происходит попадание только одного фактора из пары. Оплодотворение же способствует восстановлению пары. Такое предположение назвали правилом чистоты гамет.

Правило чистоты гамет: Гаметогенез приводит к разделению генов у одной пары.

Несмотря на это, очевидно, что существующие между живыми организмами отличия базируются на наличии многих признаков, поэтому для установления наследственных закономерностей необходим анализ пары и более признаков по потомству.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Альмадела Данза
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: